
All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 15

Password Authentication and Cracking



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 “Big” ethics questions and ideas

 Case studies

 Let’s Encrypt

 Marcus Hutchins (WannaCry)

 Hacking back

 Responsible disclosure

 Gray hat hacking

 Apple encryption



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 4

Authentication and Hardening

 In the next unit, we will be covering:

 Authentication

 How do users authenticate themselves to systems?

 How do attackers take advantage of these authentication methods?

 Hardening

 How do we configure systems so that they are secure against 

attackers?



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 5

Components of Authentication

 Identification

 Provide a claimed identity to the system

 e.g., username, SSN, UMBC ID

 Verification

 Establish validity of the provided identity

 e.g., password, PIN, swipe card



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 6

Means of Verifying Identity

 Something a user knows

 Password, PIN, security questions

 Something a user possesses

 Electronic keycard, smart card

 Something a user is or does

 Biometrics such as fingerprints, facial recognition



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 7

Multifactor Authentication

 Using more than one category of authentication in order to 

verify a user’s identity

 For example, when you log into your online bank account from 

a new computer

 Bank sends a one-time PIN number to your phone

 Have to know the password and possess the phone to authenticate



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 8

Authentication Using Passwords



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 9

Why Do We Still Use Passwords?

 They’re kind of terrible?

 Very prone to user error

 Use of weak passwords

 Reuse of passwords across multiple accounts

 Forgetting to change default credentials

 But no one can seem to replace them with anything better yet

 Still the most widespread verification method



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 10

Password Managers

 All of the security of long passwords (with none of the inconvenience)

 No password reuse across multiple sites

 Resistant to keyloggers

 Single point of failure

 Online storage: susceptible to hacking

 Local storage: susceptible to malware and user stupidity



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 11

Password Hashing

 Plaintext passwords should never be stored on disk

 When a user makes an account on a system

 Their password should be hashed

 Using a cryptographically secure hashing algorithm

 The resulting hash digest should be stored on disk

“MyPassword” 48503DFD58720BD5FF35C102065A52D7

Password Stored Password Hash



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 12

Password Hashing Usage

 When a user attempts to log in, the password they enter is 

hashed and compared to the one on disk

48503DFD58720BD5FF35C102065A52D7

Stored Password Hash

“MyPassword” 48503DFD58720BD5FF35C102065A52D7

Password Attempt Password Attempt Hash





All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 13

Common Password Authentication Features

 Requiring a user to wait between authentication attempts

 Locking a user out if they fail to authenticate multiple times

 These features prevent cybercriminals from simply brute-forcing 

login attempts on a target system



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 14

Distributed Online Password Guessing

 Computers that allow users to log in over a network (such as 

SSH and RDP) are constantly being scanned by automated 

password guessers

 Check for computers with default / weak credentials

 Handy for malicious purposes that aren’t targeted

 Botnets, cryptocurrency mining

 Example: https://www.fireeye.com/blog/threat-research/2015/02/anatomy_of_a_brutef.html



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 15

Offline Password Cracking

 If hackers can gain access to the password hashes on a 

system, they can perform offline password cracking

 No longer limited by restrictions on target computer, 

such as limited number of guesses or wait time



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 16

Offline Password Cracking Methods



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 17

Brute-Force Attack

 Generate the hash of every possible 

password and check for matches

 Pros

 Thorough

 Can crack short passwords easily

 Cons

 Exponentially more time consuming as passwords get longer



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 18

Dictionary Attacks

 Most users don’t use random strings as passwords

 Passwords tend to contain real words and predictable patterns

 Create a list of potential passwords, hash all of them, and store 

password-hash pairs in a dictionary

 How do you create your wordlist?

 Let’s go on a quick tangent…



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 19

Tangent: RockYou

 A company that developed widgets for MySpace

 Suffered a data breach in 2009 due to an unpatched, 

ten-year-old SQL vulnerability

 Passwords were stored in plaintext!

 Over 32 million accounts affected

 Over 14 million unique passwords 

 Now commonly used as a password cracking wordlist



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 20

Tangent: Common RockYou Passwords

Rank Count Password

11 16,227 nicole

12 15,308 daniel

13 15,163 babygirl

14 14,726 monkey

15 14,331 lovely

16 14,103 jessica

17 13,984 654321

18 13,981 michael

19 13,488 ashley

20 13,456 qwerty

Rank Count Password

1 290,792 123456

2 79,076 12345

3 76,789 123456789

4 59,462 password

5 49,952 iloveyou

6 33,291 princess

7 21,725 1234567

8 20,901 rockyou

9 20,553 12345678

10 16,648 abc123



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 21

Dictionary Attack Viability

 For N passwords:

 Generating the dictionary is O(N) time

 The dictionary requires O(N) storage space

 Looking up a password in the dictionary is O(1)

 Once generated, can be reused across multiple attacks!

 Not as thorough as brute-forcing - if a target hash isn’t in your 

dictionary, you’re out of luck



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 22

Dictionary Attacks: Different Definitions

 “Traditional” dictionary attacks

 Attempting “dictionary” words when brute-forcing a password

 “Pre-computed” dictionary attacks

 Pre-compute possible passwords and their hash result

 Create a dictionary data structure (key:value)

 Where hashes are keys, and the password is the result

 In this class, this is what we normally mean when we say “dictionary”



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 23

~*~ Rainbow Tables ~*~



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 24

Rainbow Tables

 Similar to a dictionary attack

 Table of pre-computed passwords and corresponding hashes

 Time-memory tradeoff

 Takes up less space on disk than a dictionary attack

 Takes more time to perform lookups

 Generate chains of passwords and hashes

 Only need to store the beginning and end of each chain in the 

rainbow table



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 25

Rainbow Tables

 To crack a password hash, generate its chain and 

check if hashes are in the rainbow table

 If so, generate the chain from the beginning password in the chain

 Plaintext password will be located just before the target hash in the 

chain

 Two different implementations

 End the chain when it reaches a certain length

 End the chain when a password hash meets a certain condition



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 26

Rainbow Tables

 To generate a chain, need a reduce function

 One-to-one mapping from a hash to a different password in the list

password1

1465...b852

password2

38da...2d39

password3

2867...c6a4

H H HRR R

passwordN

f447...15af

HR...



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 27

 Choose a starting password

 Hash and reduce, over and over (and over and over)

 Only store the starting password, and the final hash result

 Repeat previous steps to make many more chains

Stored 
information

+ more chains

Rainbow Tables Example: Generation

37

dogs

218

asdf

19

umbc

158

sitm

99

rfxu

4

onrj

55

pdtr

dogs, 55



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 28

Rainbow Tables Example: Finding

 When attempting to find a user’s password in the rainbow table

 Start running it through the same hash and reduce function chain

 At each stage, check to see if the hash matches any chain ends

 If it does, move onto “cracking” the password

 Search has failed if the hash/reduce steps on the password hash 

have reached the length of the chain, but no matches were found

19 158

sitm

99

rfxu

4

onrj

55

pdtrPassword hash

(don’t know 
the password)

19

Doesn’t 
match any 
rainbow 

table
“ends” 

Found a 
match!





All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 29

 Once a match has been found, we can crack the password

 Start with the table’s known beginning

 Perform the hash and reduce chain again

 Check to see if the hash at each step matches the 

hash we already know corresponds to the user’s password

 If it does, the previous step is the password that created it

Previous step is 
the password!

Rainbow Tables Example: Cracking

Start of chain

(chain that 
ends in 55)

dogs

37

dogs

218

asdf

19

umbcDoesn’t 
match the 

user’s 
password 
hash of 19  



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 30

Rainbow Tables Example: Overlap
dogs

5537 218

asdf

19

umbc

158

sitm

99

rfxu

4

onrj pdtr
Creation

Finding

Cracking

19 158

sitm

99

rfxu

4

onrj

55

pdtr

dogs

37 218

asdf

19

umbc

Store 

Only

You can see better here 
how the initial table is 
used to both find, and 

then crack the password.



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 31

Salting



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 32

Salted Passwords

 Password salting is a defense against dictionary attacks and 

rainbow tables

 When a user creates an account on a system, a random salt is 

generated for them

 The salt is prepended to their password before it is hashed

“123456MyPassword” 1F9A5F9E0996D329BDB613F6E83203E3

Salted Password Stored Salted Password Hash



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 33

Salted Password Usage

 When a user attempts to log in, the salt and password they 

enter are hashed together and compared to the one on disk

“123456MyPassword” 1F9A5F9E0996D329BDB613F6E83203E3

Salted Password Attempt Salted Password Attempt Hash

1F9A5F9E0996D329BDB613F6E83203E3

Stored Salted Password Hash





All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 34

Salted Passwords

 Password salts are stored in plaintext

 They don’t need to be hidden from an attacker to be effective

 Why?

 For a b-bit salt, the number of possible passwords 

is increased by a factor of 2b bits

 Because each user has their own salt, attacks involving 

precomputed hashes cannot be reused



All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 35

Image Sources

 Rainbow:

 https://commons.wikimedia.org/wiki/File:Rainbow-diagram-ROYGBIV.svg


