
All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 15

Password Authentication and Cracking

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 “Big” ethics questions and ideas

 Case studies

 Let’s Encrypt

 Marcus Hutchins (WannaCry)

 Hacking back

 Responsible disclosure

 Gray hat hacking

 Apple encryption

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 4

Authentication and Hardening

 In the next unit, we will be covering:

 Authentication

 How do users authenticate themselves to systems?

 How do attackers take advantage of these authentication methods?

 Hardening

 How do we configure systems so that they are secure against

attackers?

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 5

Components of Authentication

 Identification

 Provide a claimed identity to the system

 e.g., username, SSN, UMBC ID

 Verification

 Establish validity of the provided identity

 e.g., password, PIN, swipe card

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 6

Means of Verifying Identity

 Something a user knows

 Password, PIN, security questions

 Something a user possesses

 Electronic keycard, smart card

 Something a user is or does

 Biometrics such as fingerprints, facial recognition

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 7

Multifactor Authentication

 Using more than one category of authentication in order to

verify a user’s identity

 For example, when you log into your online bank account from

a new computer

 Bank sends a one-time PIN number to your phone

 Have to know the password and possess the phone to authenticate

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 8

Authentication Using Passwords

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 9

Why Do We Still Use Passwords?

 They’re kind of terrible?

 Very prone to user error

 Use of weak passwords

 Reuse of passwords across multiple accounts

 Forgetting to change default credentials

 But no one can seem to replace them with anything better yet

 Still the most widespread verification method

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 10

Password Managers

 All of the security of long passwords (with none of the inconvenience)

 No password reuse across multiple sites

 Resistant to keyloggers

 Single point of failure

 Online storage: susceptible to hacking

 Local storage: susceptible to malware and user stupidity

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 11

Password Hashing

 Plaintext passwords should never be stored on disk

 When a user makes an account on a system

 Their password should be hashed

 Using a cryptographically secure hashing algorithm

 The resulting hash digest should be stored on disk

“MyPassword” 48503DFD58720BD5FF35C102065A52D7

Password Stored Password Hash

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 12

Password Hashing Usage

 When a user attempts to log in, the password they enter is

hashed and compared to the one on disk

48503DFD58720BD5FF35C102065A52D7

Stored Password Hash

“MyPassword” 48503DFD58720BD5FF35C102065A52D7

Password Attempt Password Attempt Hash

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 13

Common Password Authentication Features

 Requiring a user to wait between authentication attempts

 Locking a user out if they fail to authenticate multiple times

 These features prevent cybercriminals from simply brute-forcing

login attempts on a target system

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 14

Distributed Online Password Guessing

 Computers that allow users to log in over a network (such as

SSH and RDP) are constantly being scanned by automated

password guessers

 Check for computers with default / weak credentials

 Handy for malicious purposes that aren’t targeted

 Botnets, cryptocurrency mining

 Example: https://www.fireeye.com/blog/threat-research/2015/02/anatomy_of_a_brutef.html

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 15

Offline Password Cracking

 If hackers can gain access to the password hashes on a

system, they can perform offline password cracking

 No longer limited by restrictions on target computer,

such as limited number of guesses or wait time

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 16

Offline Password Cracking Methods

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 17

Brute-Force Attack

 Generate the hash of every possible

password and check for matches

 Pros

 Thorough

 Can crack short passwords easily

 Cons

 Exponentially more time consuming as passwords get longer

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 18

Dictionary Attacks

 Most users don’t use random strings as passwords

 Passwords tend to contain real words and predictable patterns

 Create a list of potential passwords, hash all of them, and store

password-hash pairs in a dictionary

 How do you create your wordlist?

 Let’s go on a quick tangent…

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 19

Tangent: RockYou

 A company that developed widgets for MySpace

 Suffered a data breach in 2009 due to an unpatched,

ten-year-old SQL vulnerability

 Passwords were stored in plaintext!

 Over 32 million accounts affected

 Over 14 million unique passwords

 Now commonly used as a password cracking wordlist

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 20

Tangent: Common RockYou Passwords

Rank Count Password

11 16,227 nicole

12 15,308 daniel

13 15,163 babygirl

14 14,726 monkey

15 14,331 lovely

16 14,103 jessica

17 13,984 654321

18 13,981 michael

19 13,488 ashley

20 13,456 qwerty

Rank Count Password

1 290,792 123456

2 79,076 12345

3 76,789 123456789

4 59,462 password

5 49,952 iloveyou

6 33,291 princess

7 21,725 1234567

8 20,901 rockyou

9 20,553 12345678

10 16,648 abc123

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 21

Dictionary Attack Viability

 For N passwords:

 Generating the dictionary is O(N) time

 The dictionary requires O(N) storage space

 Looking up a password in the dictionary is O(1)

 Once generated, can be reused across multiple attacks!

 Not as thorough as brute-forcing - if a target hash isn’t in your

dictionary, you’re out of luck

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 22

Dictionary Attacks: Different Definitions

 “Traditional” dictionary attacks

 Attempting “dictionary” words when brute-forcing a password

 “Pre-computed” dictionary attacks

 Pre-compute possible passwords and their hash result

 Create a dictionary data structure (key:value)

 Where hashes are keys, and the password is the result

 In this class, this is what we normally mean when we say “dictionary”

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 23

~*~ Rainbow Tables ~*~

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 24

Rainbow Tables

 Similar to a dictionary attack

 Table of pre-computed passwords and corresponding hashes

 Time-memory tradeoff

 Takes up less space on disk than a dictionary attack

 Takes more time to perform lookups

 Generate chains of passwords and hashes

 Only need to store the beginning and end of each chain in the

rainbow table

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 25

Rainbow Tables

 To crack a password hash, generate its chain and

check if hashes are in the rainbow table

 If so, generate the chain from the beginning password in the chain

 Plaintext password will be located just before the target hash in the

chain

 Two different implementations

 End the chain when it reaches a certain length

 End the chain when a password hash meets a certain condition

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 26

Rainbow Tables

 To generate a chain, need a reduce function

 One-to-one mapping from a hash to a different password in the list

password1

1465...b852

password2

38da...2d39

password3

2867...c6a4

H H HRR R

passwordN

f447...15af

HR...

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 27

 Choose a starting password

 Hash and reduce, over and over (and over and over)

 Only store the starting password, and the final hash result

 Repeat previous steps to make many more chains

Stored
information

+ more chains

Rainbow Tables Example: Generation

37

dogs

218

asdf

19

umbc

158

sitm

99

rfxu

4

onrj

55

pdtr

dogs, 55

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 28

Rainbow Tables Example: Finding

 When attempting to find a user’s password in the rainbow table

 Start running it through the same hash and reduce function chain

 At each stage, check to see if the hash matches any chain ends

 If it does, move onto “cracking” the password

 Search has failed if the hash/reduce steps on the password hash

have reached the length of the chain, but no matches were found

19 158

sitm

99

rfxu

4

onrj

55

pdtrPassword hash

(don’t know
the password)

19

Doesn’t
match any
rainbow

table
“ends”

Found a
match!

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 29

 Once a match has been found, we can crack the password

 Start with the table’s known beginning

 Perform the hash and reduce chain again

 Check to see if the hash at each step matches the

hash we already know corresponds to the user’s password

 If it does, the previous step is the password that created it

Previous step is
the password!

Rainbow Tables Example: Cracking

Start of chain

(chain that
ends in 55)

dogs

37

dogs

218

asdf

19

umbcDoesn’t
match the

user’s
password
hash of 19

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 30

Rainbow Tables Example: Overlap
dogs

5537 218

asdf

19

umbc

158

sitm

99

rfxu

4

onrj pdtr
Creation

Finding

Cracking

19 158

sitm

99

rfxu

4

onrj

55

pdtr

dogs

37 218

asdf

19

umbc

Store

Only

You can see better here
how the initial table is
used to both find, and

then crack the password.

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 31

Salting

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 32

Salted Passwords

 Password salting is a defense against dictionary attacks and

rainbow tables

 When a user creates an account on a system, a random salt is

generated for them

 The salt is prepended to their password before it is hashed

“123456MyPassword” 1F9A5F9E0996D329BDB613F6E83203E3

Salted Password Stored Salted Password Hash

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 33

Salted Password Usage

 When a user attempts to log in, the salt and password they

enter are hashed together and compared to the one on disk

“123456MyPassword” 1F9A5F9E0996D329BDB613F6E83203E3

Salted Password Attempt Salted Password Attempt Hash

1F9A5F9E0996D329BDB613F6E83203E3

Stored Salted Password Hash

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 34

Salted Passwords

 Password salts are stored in plaintext

 They don’t need to be hidden from an attacker to be effective

 Why?

 For a b-bit salt, the number of possible passwords

is increased by a factor of 2b bits

 Because each user has their own salt, attacks involving

precomputed hashes cannot be reused

All materials copyright UMBC, RJ Joyce, and Dr. Katherine Gibson unless otherwise noted 35

Image Sources

 Rainbow:

 https://commons.wikimedia.org/wiki/File:Rainbow-diagram-ROYGBIV.svg

